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Abstract

Despite deep neural networks significantly improve the
performance of stereo matching, the challenge to handle
outliers on occluded and indistinguishing areas still re-
mains. Most current works leverage neural networks to im-
prove the cost computation, while less attention is paid to
cost aggregation and refinement. In this paper, we propose
a learnable region support to guide the cost aggregation
and refinement for stereo matching. In particular, the region
support is modeled from the perspective of learning and fa-
vorably achieved by a novel depth segment network. With
the learnable region support, we redesign the cost aggre-
gation and refinement for stereo matching. Compared with
the hand-crafted region support, our approach can more ef-
fectively handle the outliers. The experiments demonstrate
that our learnable region support is superior to the state-of-
the-art methods.

1. Introduction
Stereo matching has aroused considerable research in-

terests in computer community. It aims to gain the accurate
depth information by fusing two-frame images recorded by
a stereo camera and exploiting the disparity between them.
The disparity map can be widely used for 3D scene recon-
struction, robotics, autonomous driving and virtual reality
[3, 13, 14, 10]. Benefitting from the effectiveness of deep
neural networks, many stereo matching have reached ap-
pealing performance with the pipeline composed of cost
computation, cost aggregation, and refinement [30, 31, 8].
Most existing methods focus on cost computation [6, 20],
while less attention is paid to cost aggregation and refine-
ment. In stereo matching, actually, cost aggregation and
refinement are indispensable to remove outliers1, especially
for the occluded and indistinguishable areas [30, 18, 22].

In general, cost aggregation and refinement are em-
ployed to rectify outliers by aggregating values among a
specific region in stereo matching. Many studies [26, 25,

1Unless otherwise specified, we treat the mismatching value on cost
volume and the error disparity on disparity map as outliers.

17] demonstrated that the region support can offer suitable
regions and adaptive weights such as segment-based meth-
ods [11, 21] or cross-based methods [33, 17]. However,
these hand-crafted methods are inferior to hold a basic as-
sumption which pixels within the same region are supposed
to share the same disparity value. In this paper, we propose
a learnable region support favorably achieved by a novel
depth segment network, which fully satisfies the assump-
tion mentioned above. Furthermore, we reformulate both
the cost aggregation and refinement with the guidance of
our region support for stereo matching.

To ensure the learnable region support is composed of
pixels at same disparity, the network should assign each
pixel with a certain label, which is a typical pixel-wise la-
beling task [23]. In particular, we design a depth segment
network by leveraging the fully convolutional network, in
which we treat the disparity of each region as the training
label. The support regions can be obtained from the seg-
mentation results of the network. With support regions, the
adaptive weights can further be computed according to deep
representations and spatial relationships.

With the learnable region support, we consider the cost
aggregation as the process of finding and rectifying outliers.
In this work, we directly determine outliers by a simple vari-
ance measurement on each support region and rectify them
by adaptive weights. The cost aggregation based on the
hand-crafted region support can only be performed at the
same disparity [15, 22]. In contrast, our cost aggregation
can be carried out among different disparities by the learn-
able region support. Our learnable region support implies
the mapping relationship of the disparity map between the
low-resolution space and the high-resolution space. There-
fore, it can also be employed for the up-sampling refine-
ment of stereo matching. The up-sampling refinement can
be naturally carried out by computing the disparity value at
high-resolution according to the mapping relationship.

The stereo matching based on our learnable region sup-
port is performed through three key components including
the generation of the learnable region support, cost aggre-
gation and up-sampling refinement based on the region sup-
port. The whole framework of our stereo matching is shown

1
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Figure 1. The Region Support Method for Stereo Matching. The region support for stereo mathcing can mainly be carried out in three
steps: determining learnable region support, conducting cost aggregation according to the region support and refining the disparity with
the region support.

in Figure.1. This pipeline can be compatible with any cost
computation methods using neural networks. We evaluate
our model on representative datasets (e.g., Scene Flow [10]
and KITTI [3, 14]), which clearly demonstrates that the pro-
posed approach is superior to the state-of-the-art methods.
In summary, our contributions are three-fold.

• We propose a learnable region support which can ef-
fectively raise the accuracy of stereo matching. This
work is, to the best of our knowledge, the first to model
the region support from the perspective of learning.

• To effectively obtain the learnable region support, we
design a novel depth segment network to obtain sup-
port regions composed of pixels at the same disparity,
which fully satisfies the fundamental assumption of the
region support.

• We redesign the cost aggregation and refinement for
stereo matching with the guidance of learnable region
support.

2. Related Work
2.1. Learnable Region Support

The region support concept is widely used in stereo
matching [26, 25, 17, 15]. There are mainly two approaches
to improve region support [15, 22], i.e., the generation of
suitable regions and the computation of adaptive weights.
Suitable regions can be achieved by sliding predefined win-
dows [5, 32, 22] or designing adaptive shapes [15, 27]. The
adaptive weights can be obtained according to the color in-
tensity and spatial relationship of pixles among the region
[12, 9]. Among these approaches, the segment-based region
support attracts much attention because it provides both the
effective support regions and adaptive weights [29, 12, 21].
Some of them simply use color intensity as the segment la-
bel [28, 33], or adopt a more complex score scheme to im-
prove the segment [23, 15]. The adaptive weights can be

obtained according to segmentation results. These meth-
ods are limited by the hand-crafted mechanism to main,tain
the segmented regions composed of pixels at same dispar-
ity. The adaptive weights computed from the color intensity
might not reflect the true similarity in the disparity space.
Compared to [28, 21] which assume the support region is
coincident to a homogeneous color, we enhance the region
to be consistent with a certain disparity with the help of a
learning mechanism. The learnable region support ensures
that support regions consist of pixels at same disparity. The
adaptive weights are also improved by the similarity com-
puted from deep representation.

2.2. Stereo Matching using Neural Networks

Driven by the emergence of neural networks, stereo
matching based on deep learning has proven to perform re-
markably well on benchmark datasets. The usage of neural
network is firstly introduced by Lecun et al. [30, 31] for
cost computation. Then it is efficiently improved by Luo et
al. [8]. Some current works further improve the cost com-
putation by designing a more effective network to generate
the robust representation [20, 16]. Meanwhile several works
focused on the similarity measurement to compute match-
ing cost [6, 19]. Many efforts have been devoted to the cost
computation using neural networks, while less attention is
paid to cost aggregation and refinement. To remove outliers
on occluded and textureless areas, the learning mechanism
for cost aggregation and refinement is essential. In this pa-
per, we propose a depth segment network to enhance the
region support concept for cost aggregation and refinement
of stereo matching. Compared with the usual segmenta-
tion networks which utilize certain semantics as the label of
each category [12, 7], we employ the disparity as the label
for each region. The segmentation results can produce the
learnable region support to carry out the cost aggregation
and refinement.

2
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3. Learnable Region Support
3.1. Problem Formulation

In this paper, the learnable region support is applied as
the guidance to carry out the cost aggregation and refine-
ment for stereo matching. A general stereo matching prob-
lem can be formulated as

M(x, y) = max(s(R(x, y), T (x+ d, y))), (1)

where M is the disparity map, max(·) indicates the winner-
take-all (WTA) strategy for disparity computation, s(·) is
the similarity measurement for cost computation, R is the
reference image, T is the target image and d is the disparity.
In the past decade, we have witnessed substantial progress
in stereo matching based on Eq. (1). However, outliers on
cost volume and refinement are unfavorable for achieving
the highly accurate disparity map. The outlier value on cost
volume can be suppressed by improving the cost computa-
tion [8, 20] or rectifying mismatching values [33].

With the development of deep learning, many efforts are
paid on the cost computation, however, outliers in the tex-
tureless and occluded areas are still unavoidable. As a re-
sult, the cost aggregation and refinement are essential to
rectify outliers. The underlying hypothesis to employ the
cost aggregation and refinement is that the value on either
cost volume or disparity map should be similar for pixels at
the same disparity, so outliers can be rectified according to
the correct values. Under this hypothesis, the region sup-
port concept introduced in [26, 25], which focuses on the
determination of the regions consisting of pixels at same
disparity. With merits of support regions, adaptive weights
for aggregation can be easily computed according to the
color information and spatial relationship between pixels.
Then the rectification on cost volume or disparity map can
be achieved by aggregating the information among the sup-
port region using adaptive weights. However, the empirical
hand-crafted mechanism [28, 1] is difficult to characterize
the reliable information of the disparity space due to the
naive usage of low-level color and spatial information.

To this end, we propose a novel learnable region sup-
port mechanism, in which the satisfactory disparity accu-
racy is obtained by determining the reliable regions com-
prised of pixels at the same disparity and enhancing adap-
tive weights with deep representations simultaneously. The
learning mechanism equips the region support with the abil-
ity to model real information in the disparity space. Moti-
vated by the segment-based region support [11, 23] which
assumes that the reference image can be divided into a set
of non-overlapping regions, where the region label is coin-
cident with a specific color segment, we propose a depth
segment network to enforce the segmentation. The region
label is imposed on the disparity, which means that pixels
in the same region would share same disparity. Therefore,

Reference 
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64
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64
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Figure 2. The depth segment network, each layer represents a 3
layres residual unit with relu and batch normalized function.The
sub-sampling operation is at the strat of each residual unit and the
layer before up-sampling is skip connected with the last layer be-
fore sub-sampling with same shape.

the learnable region is extremely useful for cost aggregation
and refinement.

The definition of learnable segment-based region support
can be expressed as

n⋃
i=1

Ni = I ∧ ∀Ni
⋂
Nj = ∅

I(X) ∈ Nd=M(X)

w(X,Y ) =W (M(X)−M(Y ))

(2)

Here, N denotes the set of support region, according to
assumption of segment-based, the support regions are non-
overlapped. Each pixel I(X) on the postion X = (x, y)
of image I should belong to a certain region according its
disparity. As for the adaptive weight w, the computation
function W should be computed based on the similarity of
the disparities between M(X) and M(Y ). The learning of
region support can be seen as the process to label each pixel
with a particular disparity which is a typical segmentation
problem. The learned support regions obtained from depth
segment network are composed of pixels at the same dispar-
ity, which can find out outliers on cost volume and disparity
map. Also, the adaptive weights can also be obtained by the
deep representation and spatial relationship of pixels at the
same region.

3.2. Depth Segment Network

As discussed above, our region support is composed of
pixels at the same disparity. It is not necessary to ascertain
the exact disparity for each pixel, therefore, we only need to
find out which region the pixel belongs to, in other words,
each pixel should have a label indicating its corresponding
region. In this section, we propose a depth segment network
which can divide the reference image into L regions, where
L is a hyper-parameter for the number of support regions.

Many works [2, 23, 24] show that the single image depth
prediction network is capable of obtaining the depth infor-
mation from the reference image. Although the prediction
may not be used to generate the accurate disparity map, it

3
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is sufficient to offer a trustworthy guidance for the region
support determination. To obtain the region support, each
pixel should be given a certain label representing the region
disparity, which is a typical pixel-wise labeling task. The
fully convolutional network on similar pixel-wise task such
as semantic segment [24, 7] proves its effectiveness for this
task. Therefore, we leverage this architecture to design the
depth segment network and treat the disparity as the region
label. The network is trained to annotate label each pixel
with its region label which represent the disparity of pixels.
The ground truth is obtained from the stereo matching dis-
parity map with a simple threshold segment on the disparity
map.

The proposed network can be divided into two parts:
feature extraction and region prediction. The feature ex-
traction part is composed of 8 residual units and S op-
tional sub-sampling layers, where S is the scale ratio for
the cost computation. Based on the extracted feature E ∈
RW/S×H/S×F of the input image, we leverage the fully
convolutional network to effectively perform pixel-wise la-
beling to obtain the depth information. The architecture of
our network is illustrated in Figure.2 and the parameter set-
ting can be found in Supplementary Material due to space
limit.

The prediction step is to determine which region the
pixel belongs to. Instead of using a simple classification
strategy for segmentation, we formulate the problem as a re-
gression process. Because the classification strategy for se-
mantic segmentation assumes that the labels are irrelevant,
but our label is actually relevant. Inspired by the GC-Net
[6], we introduce the soft-argmin function expressed as

P (X) = 1/L×
L∑
d=0

d× σ(−El). (3)

Here P (X) is the predicted region label of each pixel,
L represents the hyper-parameter for the number of support
regions, El stands for the output of the last layer of the net-
work with size of W ×H×L and σ(·) denotes the softmax
operation along L dimension. Then the loss can be given by
the following supervised regression loss:

Loss = 1/(W ×H)×
W×H∑
i=0

|P (X)−G(X)|. (4)

Here, G(X) is the region label at ground truth and the |·|
represents the absolute value. The comparison of regression
loss and classification loss is conducted in Figure.4, where
we can see the regression loss leads to a more stable training
process.

Compared to the general classification operation with a
certain label, the regression loss can provide the similarity
of the pixel to a certain region. According to the predicted

Figure 3. The comparision of regression loss and classification loss
on Scene Flow dataset.

value, we can obtain the initial support region by labeling
each pixel with its region number:

P (X) = bP (X)c , (5)

where the b·c represents the round function.
The obtained initial region support from the segmenta-

tion result might be too large to reach a high accuracy, there-
fore, we segment the initial region support to smaller re-
gions. The final region support is constrained to contain
no more than 100 pixels in each support region. The final
segmentation operation is carried out according to the seg-
mentation results and spatial relationship. The details are
shown in Algorithm.1.

Algorithm 1: Obtain Region Support
Input: Segmentation Results from netowrk P ∈ RW×H

Output: The Region SupportN
1 Step1: Obtain the Initial Region Support from Segmentation
2 N = ∅
3 P = round(P )
4 while ∃X /∈ N do
5 addX toNP (X)

6 end
7 Step2: Segment the Initial Region Support to Small Region
8 Ns = ∅
9 for i=0:len(N ) do

10 while pixelX inN (i) andX not inNs do
11 Nt = ∅
12 addX toNt

13 while pixel Y inN (i) and Y not inNs do
14 if |X − Y |2 < 11 then
15 add Y toNt

16 if len(Nt)> 100 then
17 addNt toNs

18 Break
19 end
20 end
21 end
22 end
23 end
24 ReturnN = Ns

4
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Algorithm 2: Region Support Cost Aggregation
Input: The initial cost volume V ∈ RW×H×D , Region SupportN ,

Deep Feature F ∈ RW×H×32

Output: The aggregated cost volumeA ∈ RW×H×D

1 Step 1: Finding outliers
2 O = ∅
3 for i =0:len(N ) do
4 mv=1/len(N (i))×

∑
σ2(V (N (i)))

5 ifX inN (i) and σ2(V (X)) > mv then
6 addX toO
7 end
8 end
9 Step 2: Rectifying outliers

10 for o inO do
11 No = o ⊂ N
12 A(o) =

(
∑

cos(F (o), F (No))× dis(o,No)× V (o))/len(N0)
13 end
14 ReturnA

4. Learnable Region Support for Stereo
Matching

In this section, we offer applications of our learnable re-
gion support on cost aggregation and sub-sampling refine-
ment for stereo matching.

4.1. Learnable Region Support for Cost Aggrega-
tion

With the learnable region support, we reformulate the
cost aggregation as the problem of determining and rectify-
ing outliers on the cost volume. As followed by [lecun], cost
computation can extract the deep representation for each
pixel of stereo pair images by a Siamese network, which can
be formulated by a function f : RW×H×C → RW×H×F ,
where W,H,C are the width, height and channel of input
images and F represents the channel of the feature map. To
compute the matching cost of each pixel in the reference
image, the similarity measurement is employed , which can
be formulated as s : RW×H×F × RW×H×F → RW×H×D
, where D represents the number of disparity levels. The
whole cost computation can be formulated as the function
c : RW×H×C × RW×H×C → RW×H×D. Given a stereo
image pair: R, T ∈ RW×H×3 , where R and T represent
the reference and target image, respectively. The cost vol-
ume V is calculated by

V = c(R, T ) = s(f(R), f(T )). (6)

The obtained initial cost volume by Eq.(6) still has some
incorrect matching value on textureless and occluded areas,
so the cost aggregation method step is critical to rectify. The
general region support methods perform the aggregation op-
eration to all pixels among the support region by integrating
other pixels in the same region with adaptive weights. A
typical region support cost aggregation method is formu-
lated as

A(X, d) =
∑

Y ∈N (X)

w(R(X), R(Y ))× V (Y, d). (7)

Here, N (X) is the support region for the pixel R(X),
w(·) is the adaptive weight, V (Y, d) is the value of initial
cost volume andA(X, d) is the aggregated cost value. From
the depth segment network, we can obtain N (X) for each
pixel R(X) on the reference image. The outliers are found
by a variance measurement:

O = σ2(V (X)) > σ2(N (i)). (8)

Here σ2(N (i)) is the mean variance of region i on the
d disparity level of the cost volume, and σ2(X) is the vari-
ance for the matching value V (X, d).The computation of
aggregation weights will be computed between outliers and
other pixels one by one:

w(X,Y ) = s(f(R(X)), f(R(Y )))× dis(X,Y ). (9)

Here,s(·) represents the similarity measurement and
dis(·) represents the spatial relationship of pixles. We lever-
age the deep feature from cost computation as the repre-
sentation for each pixel in the process of similarity compu-
tation. For the similarity measurement, we use an inner-
product layer like Content-CNN [8] to compute the inner
product as the weights for aggregation. The dis(·) spatial
relationship between pixels is defined as

dis(X,Y ) =


λ1 0 ≤ if |X − Y |2 < 1
λ2 1 ≤ if |X − Y |2 < 2
λ3 2 ≤ if |X − Y |2 < 3
λ4 3 ≤ if |X − Y |2

(10)

where |·|2 represents the Euclidean distance between two
pixels. In this paper, we set λ1=0.75, λ2=0.5, λ3=0.25 and
λ4=0.1. After getting the regions and weights, the cost ag-
gregation can be conducted by Eq.(7). The detailed algo-
rithm can be carried out as Algorithm.2.

The learnable region support can lead to aggregation
among different disparity level. After completing the ag-
gregation among the same disparity, the aggregation along
different disparity is carried out as

A(X, d) =
∑

d∈N (X)

w(T (X), T (Z))× V (Z, d), (11)

where, N (X) represents the support region for the pixel
T (Z) on the target image. The cost aggregation on the same
disparity assumes that the cost values for pixles in the same
support region on reference image should be the same on
the cost volume. In contrast, the assumption for cost ag-
gregation among different disparity is that the cost values

5
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of pixles in the same support region on the target image
should be same. The reason is that the V (x, y, d) in the
cost volume means the matching cost between R(x, y) and
T (x + d, y), so if T (x + d, y) and T (x + d, y) are similar,
then V (x, y, d) should be similar with V (x, y, d+ i). With
this formulation, the aggregation can be carried out accord-
ing to the region support from the target image. Each row of
the support region determines N (X) for pixles in this row.
For X = (x, y) and Y = (x + d, y), the similarity mea-
surement is the same as weights computation in the same
disparity, the weights can be formulated as

w(T (X), T (Y )) = s(f(T (X)), f(T (Y )))×dis(d). (12)

Algorithm 3: Region Support Refinement

Input: The low-resolution dispairty map LD ∈ RW/S2×H/S2

the region supportN
Output: The origin-resolution disparity mapHD ∈ RW×H

1 HD = zeros(W,H)

2 HD(round(X × S2/2)) = S2 × LD(X)
3 while ∃HD(X) == 0 do
4 while Y in the sameN with X do
5 Nh = ∅
6 if HD(Y)!=0 then
7 H
8 end
9 add Y toNh

10 end
11 HD(X) = (

∑
cos(F (X), F (Nh))×HD(Nh))/len(Nh)

12 end
13 ReturnHD

4.2. Learnable Region Support for Refinement

Benefiting from learnable region support, the refinement
to rectify outliers can be reformulated as

M(X) =
∑

Y ∈N (X)

w(X)×M
′
(Y ), (13)

where M
′

represents the initial disparity image and M is
the refined image. This operation can be easily conducted
like the cost aggregation among the same disparity in Algo-
rithm.2.

Furthermore, the learnable region support allows the
cost computation and cost aggregation to work in the low-
resolution space, which can remarkably reduce the compu-
tation burden. The increase of down-sampling scaling pa-
rameter S can reduce S2 times on the computation resource.
However, the down-sampling results in a low-resolution dis-
parity map, which is insufficient for the high accuracy of
stereo matching. In this paper, we propose a solution to
carry out the up-sampling for the low-resolution disparity
map with our learnable region support.

We can obtain the original resolution region support by
removing the optimal sub-sampling layers from the depth
segment network. The low-resolution disparity map J ∈

RW/S×H/S can be obtained from the disparity computa-
tion. Based on J of low-resolution and the learnable region
support N of original-resolution, the up-sampling refine-
ment can be reformulated as

K(Y ) =
∑

Y ∈N (X)

S2 ×m(X,Y )⊗ J(X), (14)

where K represents the original resolution image, m(·)
is the mapping weights during up-sampling, N (X) de-
notes the area mapping into the high-resolution space and
⊗ stands for the up-sampling operation. We assume that
each pixel in the low-resolution space lies in the center of
the up-sampled region in the high-resolution space, there-
fore Y = S2 × X/2. Each support region can be deter-
mined by up-sampled pixels from the low-resolution space
which means pixles among a specific region in the high-
resolution space can be determined by a few pixels on the
low-resolution space. Because we can confirm the relation-
ship between each pixel in the support region, so the map-
ping relationship for up-sampling can be obtained simply by
the adaptive weight computation in Eq. (9). Since the res-
olution is up-sampled S2 times, the mapping value should
be multiplied by S2. The whole process of sub-sampling
refinement is shown in Algorithm.3.

5. Experiment Evaluation
In this section, we present the qualitative and quantita-

tive results of our learnable support on Scene Flow [10]
and KITTI [3, 14] benchmarks. We reproduce the state-
of-the-art GC-Net as the baseline to evaluate our learnable
region support. The experiments are implemented with Ten-
sor Flow and trained with standard RMSProp method. The
depth segment network is trained for 180K iterations on
Scene Flow and fine-tuned on KITTI for 40K times using
a constant learning rate of 0.001, respectively. The training
on Scene Flow takes 22 hours on an NVIDIA 1080TI.

5.1. The Evaluation for Stereo Matching

We employ the learnable region support to rectify the
cost volume and disparity map of the GC-Net, respectively.
The depth segment network is trained on Scene Flow and
KITTI. The Scene Flow dataset contains 35454 training
and 4370 testing images, which is large enough to train the
depth segment network without overfitting. In addition, the
ground truth of this synthetic dataset is dense and has few
erroneous labels. The KITTI dataset contains 194 training
and 195 test image pair consist of images of challenging and
varied road scene obtained from LIDAR data. The short-
coming is that the quantity of KITTI dataset is not large
enough to train the neural network.

We compare our region support based stereo matching
method of state-of-the-art methods by the model pre-trained
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a bGround Truth

Figure 4. The visualization of learnable region support and the result of depth segment network. There are L regions in image a and more
than 2000 regions on image b. Each of the region in b contains no more than 100 pixels. Compared to the ground truth, we can see the
image a and image b capture the real depth information.

Outliers of Ground Truth Outliers Detected by Region Support Outliers Rectified by Region Support

Figure 5. The effectivness of region support for refinement. We can see the region support can effectively detect and rectify the outliers.

Table 1. Comparisons on KITTI2015
Model All pixels Non-Occluded Pixels Time(s)

D1-bg D1-fg D1-all D1-bg D1-fg D1-all

GC-Net[6] 2.21 6.16 2.87 2.02 5.58 2.61 0.9
MC-CNN[30] 2.89 8.88 3.89 2.48 7.64 3.33 67
Displetv v2[4] 3.00 5.56 3.43 2.73 4.95 3.09 265
PSMNet 1.97 4.41 2.38 1.81 4.00 2.17 1.3
L-ResMatch[20] 2.72 6.95 3.42 2.35 5.74 2.91 48
iResNet 2.35 3.62 2.56 2.18 3.09 2.33 0.1
Our model 2.07 4.25 2.49 1.97 5.24 2.27 30.2

on Scene FLow and fine-tuned on KITTI. The results are
shown at Table.1. We can see the learnable region sup-
port raise the accuracy of baseline GC-Net by 9.3% and also
reach the state-of-the-art performance on KITTI. The pro-
motion of all pixels is much remarkable than the promotion
on non-occluded pixels, which proves that our learnable re-
gion support can effectively rectify the outliers on occluded
areas.

Furthermore, We test the effectiveness of our cost aggre-
gation and refinement on Scene Flow. The results in Table.2
shows that learnable region support for cost aggregation is
good at rectifying outliers with small error because the pro-
motion on 1 px error is more obvious than 3 px and 5 px.
The reason lies that the rectification of outliers on cost ag-
gregation can lead to a continuous disparity map through the
proposed soft-argmin function. In contrast, the refinement
performs better on outliers with big error because the rectifi-
cation on disparity map offers truncate disparity value. The
combination of cost aggregation and refinement can lead to
a more balanced result among all pixel errors. We can see
the computation time is mainly used for the cost aggregation
since the cost aggregation at different disparities is carried
out separately.

Table 2. The Comparisons of Scene Flow with GC-Net
Model error>1px error>3 px error>5 px Time(s)
GC-Net 16.9 9.34 7.22 0.95
Baseline 17.22 9.73 7.31 1.13
Cost Aggregation 13.98 7.46 6.24 28.53
Refinement 14.46 7.51 6.15 1.36
Ours 12.87 7.26 5.72 29.42

Table 3. The ability to handle the outliers.
Method Scene Flow KITTI
Benchmark Outliers Found Rectified Outliers Found Rectified

Cost Aggregation 16860 4936 3847 3254 4307 1544
Refinement 16860 4379 3724 3254 3249 1324

5.2. The Analysis of Learnable Region Support

In this section, we present a further evidence to analyze
the effectiveness the learnable region support can be effec-
tive for the cost aggregation and refinement.

Depth Segment Network We test the ability of our
depth segment network to reliably provide the depth in-
formation. In Figure.4(a), we visualize the segment result
of depth segment network. We can see that the image is
coarsely segmented into L regions according to the true dis-
parity, which means our depth segment network obtains the
reliable depth information from the input image. Then to
obtain a more fitness result, the segment results are divided
into small regions. The obtained support regions are shown
in Figure.4(b). Compared to Figure.4(a), there are thou-
sands region in the final support regions, each of the region
contains no more than 100 pixels. From Figure.4, we can
see the learnable region support realizes the basic assump-
tion for region support, in which each region is composed
of pixels at same disparity.
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d=27

Original Cost Volume Rectified Cost volume Rectified Outliers

d=49

Figure 6. The visualization of cost volume at disparity 27 and 49. We can see the region support helps to aggregate the value at cost volume.

Low-Resolution Disparity Map High-resolution Disparity Map Up-sampling Error>3 px

Figure 7. The quality of up-sampling refinement.

For Cost Aggregation We test the region support for
the cost aggregation by qualitatively visualizing the aggre-
gated results on cost volume and quantitatively analysis the
final result on disparity. In Figure.6, we compare the origi-
nal cost volume with the rectified result on disparity 27 and
49. From the visualization of outliers, we can see the re-
gion support offers different guide for the cost aggregation
in different disparity. In Table.3, we quantify the outliers
and rectification results. We can see the learnable region
support can correctly find more than 32.72% percent of the
outliers and rectify 26% of them. The rectified cost volume
can approximately lead to an average 18% promotion for
the final disparity map. These remarkable experiment re-
sults prove that the region support is effective for the cost
aggregation.

For Refinement We use the learnable region support for
the normal refinement work. The obtained outliers and rec-
tified results are shown in Figure.5, while the quantification
is shown in Table.3. We can see the learnable region sup-
port can find more than 32% outliers on the disparity map
and rectify more than 75% of outliers on Scene FLow. The
learnable region support leads to a 18% promotion for the
disparity. To test the effectiveness of the up-sampling re-
finement, the result is shown in Figure.7. The up-sampled
disparity is able to keep the fitness and maintain high ac-
curate of the disparity map. The results prove that the map-

ping relationship obtained the region support can effectively
handle the up-sampling work.

6. Conclusion

In this paper, we have presented a learnable region sup-
port for stereo matching. The depth segment network was
designed to carry out the learning mechanism for region
support. With the learnable region support, the cost aggre-
gation and refinement were redesigned for stereo matching.
We have demonstrated that learned region support can fully
satisfy the basic assumption for region support from the ex-
periments. With the analysis on cost aggregation and re-
finement, we have proved that the learnable region support
is effective for stereo matching. For example, the cost ag-
gregation with region support rectified more than 18% out-
liers on the disparity map based on GC-Net. The stereo
matching method with the redesigned cost aggregation and
refinement finally achieved the state-of-the-art performance
both on Scene Flow and KITTI.
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